
The Good, the Bad and the Ugly

The Web Services Stack and
Three Myths of Grids and

Interoperability

Jon MacLaren

WSGA Workshop
Columbus, Ohio, Aug. 2006

What is Interoperability?
• Webopedia Computer Dictionary: The

ability of software and hardware on different
machines from different vendors to share
data.

• Goal of interoperability is to get everyone
working together, e.g. Grids

• So, if we write a “Grid Service” any
(authorized) user should be able to use it.
(Technical - which I’ll deal with)

• And maybe, that doing a given task, e.g. Job
Submission, should always be the same
everywhere. (Social - which I won’t deal with)

A Cause for Concern?
• Lots of concern about interoperability
• In the GGF/OGF, there is the “Grid Interoperation

Now” effort to make large deployed Grids
interoperate.

• Also, the WS-Interoperability Organization in the Web
Services world (more later on this).

• It turns out that there are a lot of misconceptions
about interop and about WS in general.

• I tackle three of these “myths”, and, after dispelling
each one, I give advice which hopefully can provide
the methodological basis for writing good, reliable
interoperable services.

The Good

Using Web Services will
Give us Interoperability .

WS will give us Interop
• See also: Free Lunches and Silver

Bullets...
• Web Services can help us write

interoperable software, but we still need
to be careful

• Lets look at how people use the basic
WS technology...

Problems with the tooling
• Much of the earlier tooling used WS to

encode program interfaces, (think
CORBA IDL)

• WSDL is generated from a code
interface, e.g. Java2WSDL in Axis

• Consequently, people think of:
– Services as objects
– Operations as methods
– Message parts as serialized arguments

(objects/data structures)

Problems with the tooling
• Different toolsets encode things differently (no

canonical encoding exists for Java)
• So to build clients to someone else’s service,

you must start with their generated WSDL
• No guarantee that another toolset can

understand that encoding, e.g. that Axis can
build a client to Websphere generated WSDL

• The odds get worse as you change language

Example Encodings
Java2WSDL Java 1.5, Axis 1.4

• String
– soapenc:string

• Vector<String>
– <complexType name="Vector"><sequence>

 <element maxOccurs="unbounded" minOccurs="0”
name="item" type="xsd:anyType"/>

</sequence></complexType>

• String[]
– <complexType name="ArrayOf_soapenc_string">

 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType”

 wsdl:arrayType="soapenc:string[]"/>
 </restriction>
 </complexContent>
 </complexType>

What Should You Do?
• Go the other way:

– Think about the messages - design them
– Write the XML Schema, and WSDL yourself, then

generate the code interface from there
– If you can’t deal with the strange auto-generated

classes for the messages, then turn them off and
parse the DOM tree yourself

• This style is called “literal” as opposed to “encoded”
(Literal is permitted by WS-I Basic Profile 1.x - Encoded
is not!)

• Consequently, no soapenc types allowed...
• Now the WSDL is definitive (not a code interface), and

building clients in other languages will be possible...

Who/What is WS-I?
• The WS-Interoperability Organization (WS-I) creates

profiles which tell you what specs to use, but also how to
use them

• A set of restrictions are defined...
• Complying to these helps you write interoperable web

services.
– ‘Specifically, WS-I creates, promotes and supports

generic protocols for the interoperable exchange of
messages between Web services. In this context,
“generic protocols” are protocols that are independent of
any action indicated by a message, other than those
actions necessary for its secure, reliable and efficient
delivery, and “interoperable” means suitable for multiple
operating systems and multiple programming
languages.’

What Shouldn’t You Do?
• Some people can’t be bothered with this, but

they know what they want the XML to look
like.

• So, they give in and write things like:
– String processStockRequest(String xml)

• ...and parse the XML in the service code

• Please don’t do this...

Other Advice
• Remember that in a distributed system, messages

– get lost,
– get delivered out-of-order, and
– can be duplicated.

• If a client makes a request to your service, but don’t
get your reply, is there a way for them to find out
what happened?

• Remote services can fail/become unreachable. Code
using remote services must tolerate this sensibly.

• See: Waldo et al - “A Note on Distributed Computing”
• Also: MacLaren et al “Shelter from the Storm”

The Bad

Web Services are Stateless

WS are Stateless
• Nonsense.
• Amazon sells books using WS - there’s got to

be some state somewhere.
• All useful services have state
• Possibly this comment was to do with

“Stateless Protocols”, where any message to
the service can be understood by itself (it
contains sufficient context, etc.)

• But, where do we put the state?

“Classic” Web Services

• Web Services are deployed at
the organization’s boundary

• Provide (limited) ability for
people outside to
access/manipulate/interact
with the organization’s
internally-held state

• Thin layer. Stateless protocol.

• See: Helland, “Data on the
Outside versus Data on the
Inside”

Why Put It There?
• If you have a stateless protocol, and put

all the state in a database, then:
– You can deploy the service layer in a web

farm
– You get redundancy
– You get failover
– Without having to alter the service!

• Need to make the database reliable, but
this is a pretty well understood problem

But if the service layer
keeps some of the state?

• You can’t sanely deploy on a web farm
• If the service dies, the state will be lost
• Oh. And this is better how?

• Of course, if you’re using WS-RF your
service can write all its state to a
database

• But what about all the stuff that the
container does? Are those EPRs in a
database?

What Should You Do?
• My advice is to put all the state into a database,

whether you are using WS-I or WS-RF.
• Need to at least be able to repair the service to

the state it was in when it failed.
• (Can this be done with WS-RF?)
• Supporting multiple simultaneous instances of

the same service, any of which can deal with the
next request is harder (need to be able to
synchronize via the database), but way cool

• That opens the door to highly-available services

The Ugly

Using the Same (Large) WS Stack
Everywhere will give us Interoperability .

Use Our Stack - Then
Everything Will Be Fine...

• Lots of people are recommending complex
“stacks” of Web Services specifications

• Often these contain emerging specifications,
with no guarantee that:
– they will be widely implemented
– the implementations will interoperate well, or
– that the standard will become widely used, or
– the implementations will be maintained, etc.

• If these wishes don’t come true, then
interoperability is bound to be reduced, not
increased (lock-in to obscure protocol).

OGSA
• OGSA-WG Providing Profiles, following

the style of WS-I. Currently, there is a
draft OGSA WSRF Basic Profile.

• It uses the following specs:
– WS-Addressing
– WS-ResourceProperties
– WS-ResourceLifetime
– WS-BaseNotification
– WS-BaseFaults

OMII
• Open Middleware Infrastructure Institute,

producing middleware for the UK e-Science
Programme.

• From WSI Basic Profile:
– XSD, WSDL, SOAP, UDDI

• From WSI Basic Security Profile:
– WS-Security

• But then they add:
– BPEL
– WS-ReliableMessaging
– WS-Addressing

When is a Standard Safe?

• Despite much confidence, WS-RF is going to
fail. Why?
– Because IBM said Yes, Microsoft said No.

• In March, a new roadmap for WS standards
for “resources, events and management” was
announced.
– It covers the space occupied by WS-RF and WS-

Notification
– It’s backed by HP, IBM, Intel and Microsoft

• WS-RF will complete the OASIS process, but
will never be widely adopted

Normal Rules Still Apply
• Just because we’re doing Web Servces

or Grid doesn’t mean the usual
principles suddenly don’t apply
– “Simple Systems Work and Complex Ones

Don’t” (Jim Gray)
– KISS (Keep it Simple, Stupid!)

• Every WS spec you add increases the
complexity of the system...

What Price Inclusion?
• For every component in the stack, you should ask/know:

– “What does it give me that I need?”
• If you can’t answer that, you probably don’t need it.
• And don’t forget the 80/20 rule - do you really need it?

• But if you do need the component, you also need to ask:
– “What does this component cost me?”

• Cost may be to do with:
– Responsiveness - does the stack gets slower?
– Monetary - is there a free implementation?
– Reliability - how solid is the implementation?
– Interoperability - what platforms/languages are supported?

• It’s a trade-off...

What Price Exclusion?
• But if you don’t include the component, there

can be another cost:
– implementing the functionality you really do need

that would have been provided
• However, you need to be careful here
• There are sometimes “End-to-end arguments”

against pushing functionality down into the
stack from the application

• See: Saltzer et al, “End-to-end Arguments in
Systems Design”

What Should You Do?
• Keep the stack as simple as you can
• Be sure of why every part of you Web

Services stack is there
• Fear the “bleeding edge”
• Don’t use emerging specs where

possible
• (The same goes to spec writers!)

• And if you do get down as far as just
using WS-I, then, why not go further...

Do you really need SOAP?

• How about XML over HTTP?
• Pro-WS people say SOAP can go over other

things - not just HTTP
• But no-one ever uses this...
• HTTP is ubiquitous, well-supported in many

languages

• For security, you can use:
– HTTPS (Transport Level), or
– XML Encryption/XML Signature—both W3C

Recommendations—(Message Level)

I’m not alone...
“No matter how hard I try, I still think the WS-*

stack is bloated, opaque, and insanely
complex. I think it’s going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.

“I look at Google and Amazon and EBay and
Salesforce and see them doing tens of
millions of transactions a day involving
pumping XML back and forth over HTTP, and
I can’t help noticing that they don’t seem to
need much WS-apparatus.”

• Tim Bray, “The Loyal WS-Opposition”

Life Without SOAP
• I’ve written HTTP/XML services which you can write

clients to in just about any language - even bash
using curl (ugly!)

• No tooling required other than making/parsing XML,
and making HTTP requests.

• Maybe you’re not using the same stack everywhere -
but who cares? You can still write a simple function
that makes a request to my service, irrespective of
whether your code is in some fancy container or not

• Don’t need the same stack for services to talk to one
another...

• This to me is maximizing interoperability...

• The other non-tech part (getting it adopted and
deployed everywhere) is, of course, harder.

Are you a RESTafarian?
• REST (Representational State Transfer), by

Roy Fielding also proposes a lot of other
things

• This includes heavy usage of links (like
HTML) to allow a client to navigate the
content from a starting point

• I’m just using XML over HTTP - many people
do this, and say they’re doing REST

• I’m doing this because the stack is shorter,
and it lowers the bar to using my services.

One Last Quote
• “Do we see that customers who develop

applications using AWS care about REST or
SOAP? Absolutely not! A small group of REST
evangelists continue to use the Amazon Web
Services numbers to drive that distinction, but
we find that developers really just want to build
their applications using the easiest toolkit they
can find. They are not interested in what goes on
the wire or how request URLs get constructed;
they just want to build their applications.”

• Werner Vogels (Amazon CTO), interviewed by Jim Gray

Conclusions
• For interop you need good methodology, not

just technology!
1. Work out from the messages to the code
2. Watch where you put the state
3. Keep the stack simple

• Don’t propagate myths! Challenge the
definitions/conclusions that you see others
blindly accepting...

• Make up your own mind!

Questions?

References
• The Web Services-Interoperability Organization (WS-I), “WS-I

Basic Profile 1.1”, http://www.ws-i.org/Profiles/BasicProfile-
1.1.html

• Waldo et al, “A Note on Distributed Computing”,
http://research.sun.com/techrep/1994/abstract-29.html

• MacLaren et al, “Shelter from the Storm: Building a Safe Archive
ﾊin a Hostile World”,
http://scoop.sura.org/documents/gada05.pdf

• Helland, “Data on the Outside versus Data on the Inside”,
http://www-db.cs.wisc.edu/cidr/cidr2005/papers/P12.pdf

• OGSA-WG, OGSA WSRF Basic Profile, Currently at:
https://forge.gridforum.org/sf/go/doc13542?nav=1

• OMII, “Web Service Grids: An Evolutionary Approach”,
http://www.omii.ac.uk/dissemination/web_service_grids.jsp

References (cont.)
• HP/IBM/Intel/Microsoft, “Toward Converging Web Service

Standards for Resources, Events, and Management”,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webser
vices/Harmonization_Roadmap.pdf

• Gray and Reuter, Transaction Processing, S3.8
• Saltzer et al, “End-to-end arguments in system design”,

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.
pdf

• Tim Bray, “The Loyal WS-Opposition”,
http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo

• Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• Werner Vogels, interviewed by Jim Gray,
http://www.acmqueue.com/modules.php?name=Content&pa=sh
owpage&pid=388

